PEER-REVIEWED JOURNALS

*correspondence, †equal contribution
(Click title for link)

Science, published online (2018)
Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials
Jaewoo Shim†, Sang-Hoon Bae†, Wei Kong†, Doyoon Lee†, Kuan Qiao, Daniel Nezich, Yong Ju Park, Ruike Zhao, Suresh Sundaram, Xin Li, Hanwool Yeon, Chanyeol Choi, Hyun Kum, Ruoyu Yue, Guanyu Zhou, Yunbo Ou, Kyusang Lee, Jagadeesh Moodera, Xuanhe Zhao, Jong-Hyun Ahn, Christopher Hinkle, Abdallah Ougazzaden, and Jeehwan Kim*

MIT News: Researchers quickly harvest 2-D materials, bringing them closer to commercialization

IEEE Spectrum: Graphene Printing Technique “Silk Screens” Flexible Electronics

 

Nature Materials, Vol. 17, 999–1004 (2018)
Polarity governs atomic interaction through two-dimensional materials
Wei Kong†, Huashan Li†, Kuan Qiao†, Yunjo Kim, Kyusang Lee, Yifan Nie, Doyoon Lee, Tom Osadchy, Richard J Molnar, D. Kurt Gaskill, Rachael L. Myers-Ward, Keven M. Daniels, Yuewei Zhang, Suresh Sundram, Yang Yu, Sang-hoon Bae, Siddharth Rajan, Yang Shao-Horn, Kyeongjae Cho, Abdallah Ougazzaden, Jeffrey C. Grossman*, and Jeehwan Kim*

Featured as MIT spotlight on MIT homepage on 10/9/2018.

Nature News & Views: Transparency revealed

MIT News: Study opens route to flexible electronics made from exotic materials

IEEE Spectrum: Graphene Printing Technique “Silk Screens” Flexible Electronics

 

Nature Materials, Vol. 17, 335–340 (2018)
SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations
Shinhyun Choi†, Scott Tan†, Zefan Li, Yunjo Kim, Chanyeol Choi, Pai-Yu Chen, Hanwool Yeon, Shimeng Yu, and Jeehwan Kim*

Featured as MIT spotlight on MIT homepage on 1/23/2018.

Nature News & Views: Tightening grip

MIT News: Engineers design artificial synapse for “brain-on-a-chip” hardware

The Verge: MIT researchers say new chip design takes us closer to computers that work like our brains

eeNews: Low power artificial synapse chip points was to artificial brain

CNBC: MIT researchers develop new chip design to take us closer to computers that work like human brains

 

Nature, Vol. 544, 340–343 (2017)
Remote epitaxy through graphene for two-dimensional material based layer transfer
Yunjo Kim†, Samuel S. Cruz†, Kyusang Lee†, Babatunde O. Alawode, Chanyeol Choi, Yi Song, Jared M. Johnson, Christopher Heidelberger, Wei Kong, Shinhyun Choi, Kuan Qiao, Ibraheem Almansouri, Eugene A. Fitzgerald, Jing Kong, Alexie M. Kolpak, Jinwoo Hwang, and Jeehwan Kim* 

Featured as the front cover of Nature on 4/20/2017.

Nature News & Views: Materials Science: Crystals align through graphene

MIT News: Not stuck on silicon

EETimes: New Method Cuts Cost of GaAs Circuits

IEEE Spectrum: Graphene Makes Infinite Copies of Compound Semiconductor Wafers

Proceedings of the National Academy of Science, Vol. 114, 4082-4086 (2017)
Unveiling the carrier transport mechanism in epitaxial graphene for forming wafer‐scale, single‐domain graphene
Sang‐Hoon Bae, Xiaodong Zhou, Seyoung Kim, Yun Seog Lee, Samuel Cruz, Yunjo Kim, James B. Hannon, Yang Yang, Devendra K. Sadana, Frances M. Ross, Hongsik Park, and Jeehwan Kim*

MIT News: Researchers “iron out” graphene

Advanced Materials, Vol. 29, 1605896 (2017)
Selective Nanoscale Mass Transport across Atomically Thin Single Crystalline Graphene Membranes
Piran R. Kidambi, Michael S. Boutilier, Luda Wang, Doojon Jang, Jeehwan Kim, and Rohit Karnik

ACS Nano, Vol. 11, 6319 (2017)
Light-Triggered Ternary Device and Inverter Based on Heterojunction of van der Waals Materials
Jaewoo Shim, Seo-Hyeon Jo, Minwoo Kim, Young Jae Song, Jeehwan Kim, and Jin-Hong Park 

Advanced Materials, Vol. 28, 5293–5299 (2016)
Extremely Large Gate Modulation in Vertical Graphene/WSe2 Heterojunction Barristor Based on a Novel Transport Mechanism
Jaewoo Shim, Hyo Seok Kim, Yoon Su Shim, Dong-Ho Kang, Hyung-Youl ParkJaehyeong Lee, Jaeho Jeon, Seong Jun Jung, Young Jae Song, Woo-Shik Jung, Jaeho LeeSeongjun Park, Jeehwan Kim, Sungjoo LeeYong-Hoon Kim, and Jin-Hong Park. 

Advanced Energy Materials, Vol. 6, 1600198 (2016)
Atomic layer deposited aluminum oxide for interface passivation of Cu2ZnSn(S,Se)4 thin-film solar cells
Yun Seog Lee, Talia Gershon, Teodor K. Todorov, Wei Wang, Mark T. Winkler, Marinus Hopstaken, Oki Gunawan, Jeehwan Kim*. 

Representative Publications before MIT

Science, Vol. 342, 833 (2013)
Layer-resolved graphene transfer via engineered strain layers
Jeehwan Kim*, Hongsik Park*, James B. Hannon, Stephen W. Bedell, Keith Fogel, Devendra K. Sadana, Christos Dimitrakopoulos*.

Nature Communications, Vol. 5, 4836 (2014)
Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene
Jeehwan Kim*, Can Bayram*, Hongsik Park*, Cheng-Wei Cheng, Christos Dimitrakopoulos, John A. Ott, Kathleen B. Reuter, Stephen W. Bedell, and Devendra K. Sadana.

Nature Communications, Vol. 6, 6391 (2015)
10.5% amorphous silicon/polymer tandem photovoltaic cell
Jeehwan Kim*, Ziruo Hong*, Gang Li, Tze-bin Song, Jay Chey, Devendra Sadana, and Yang Yang*.

Advanced Materials, Vol. 26, 4082 (2014)
9.4% efficient three-dimensional amorphous silicon solar cells on high aspect-ratio glass microcones
Jeehwan Kim*, Corsin Battaglia*, Mathieu Charrière, Augustin Hong, Wooshik Jung, Hongsik Park, Christophe Ballif, and Devendra Sadana.

Advanced Materials, Vol. 24, 1899 (2012)
Engineering of contact resistance between transparent single-walled carbon nanotube films and a-Si:H single junction solar cells by gold nanodots
Jeehwan Kim*, Augustin Hong, Bhupesh Chandra, George Tulevski, and Devendra K. Sadana.

ACS Nano, Vol. 6, 265 (2012)
Three-Dimensional a-Si:H Solar Cells on Glass Nanocone Arrays Patterned by Self-Assembled Sn Nanospheres
Jeehwan Kim*, Augustin J. Hong, Jae-Woong Nah, Byungha Shin, Frances M. Ross, and Devendra K. Sadana.

Applied Physics Letters, Vol. 98, 082112 (2011)
Improved germanium n+/p diodes formed by coimplantation of antimony and phosphorus
Jeehwan Kim*, Stephen W. Bedell, and Devendra K. Sadana.

Applied Physics Letters, Vol 89, 152117 (2006)
The fabrication of dislocation-free tensile strained Si thin films using controllably oxidized porous Si substrates

J
eehwan Kim* and Ya-Hong Xie.

Other Publications before MIT

20. Jeehwan Kim*, Homare Hiroi*, Teodor K. Todorov*, Oki Gunanwan, Masaru Kuwahara, Tayfun Gokmen, Dhruv Nair, Marinus Hopstaken, Byungha Shin, Hiroki Sugimoto, and David Mitzi, “High-efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitterAdvanced Materials, Vol. 26, 7427 (2014) Frontispiece

19. Jeehwan Kim*, Stephen W Bedell, and Devendra Sadana, “Multiple implantation and multiple annealing of phosphorus doped germanium to achieve n-type activation near theoretical limitApplied Physics Letters, Vol. 101, 112107 (2012)

18. Jeehwan Kim*, Ahmed Abou-Kandil, Augustin J. Hong, Mohamed Saad, Devendra K. Sadana, and Tze-Chiang Chen, “Efficiency Enhancement of a-Si:H single junction solar cells by a-Ge:H incorporation at the p-type a-SiC:H/transparent conducting oxide interface”, Applied Physics Letters, Vol. 99, 062102 (2011)

17. Jeehwan Kim*, Ahmed Abou-Kandil, Keith Fogel, Harold Hovel, and Devendra K Sadana “The role of high work-function metallic nanodots on the performance of a-Si:H solar cells : Offering ohmic contacts to light trapping”, ACS Nano, Vol. 4, 7331 (2010)

16.Jeehwan Kim*, Daniel Inns, Keith Fogel, and Devendra K. Sadana, “ Surface texturing of single-crystalline silicon solar cells using low density SiO2 films as an anisotropic etch mask”, Solar Energy Materials and Solar Cells, Vol. 94, 2091 (2010)

15. Jeehwan Kim*, Daniel Inns, and Devendra K. Sadana, “Investigation on critical failure thickness of hydrogenated/non-hydrogenated amorphous silicon films”, Journal of Applied Physics, Vol. 107, 073507 (2010)

14. Jeehwan Kim*, Stephen W. Bedell, Siegfried Maurer, Rainer Loesing, and Devendra K. Sadana, “Activation of implanted n-type dopants in Ge over the active concentration of 1×1020 cm-3 using co-implantation of Sb and P”, Electrochemical and Solid-state Letters, Vol 13, H12 (2010)

13. Jeehwan Kim*, Daniel Inns, and Devendra K. Sadana, “Cracking behavior of evaporated amorphous silicon films”, Thin Solid Films, Vol. 518, 4908 (2010)

12. Jeehwan Kim*, Stephen Bedell, Devendra Sadana, “> 1020 cm-3 n-doping in Ge by Sb/P Co-implants: n+/p Diodes with Improved Rectification”, ECS Transactions, Vol 33, 201 (2010)

11. Jeehwan Kim*, Jae Young Lee, and Ya-Hong Xie, “Fabrication of dislocation-free Si films under uniaxial tension via oxidation of porous Si substrates”, Thin Solid Films, Vol 516, 7599 (2008)

10. Jeehwan Kim*, Biyun Li, and Ya-Hong Xie, “A method for fabricating dislocation-free tensile-strained SiGe films via the oxidation of porous Si substrates”, Applied Physics Letters, Vol 91, 252108 (2007)

9. Can Bayram, John Ott, Kuen-Ting Shiu, Cheng-Wei Cheng, Yu Zhu, Jeehwan Kim, Manijeh Razeghi, and Devendra Sadana, “Cubic Phase GaN on Nano-grooved Si (100) via Maskless Selective Area Epitaxy”, Advanced Functional Materials, Vol. 24, 4492 (2014), Frontispiece

8. In-yeal Lee, Hyung-Youl Park, Jin-hyung Park, Gwangwe Yoo, Myung-Hoon Lim, Junsung Park, Rathi Servin, Woo-Shik Jung, Jeehwan Kim, Sang-Woo Kim, Yonghan Roh, Gil-Ho Kim and Jin-Hong Park, “Poly-4-vinylphenol and Poly(melamine-co-formaldehyde)-based Graphene Passivation Method for Flexible, Wearable and Transparent Electronics”, Nanoscale, vol. 6, no. 7, pp. 3830 – 3836, 2014.

7. Young T Chae, Jeehwan Kim, Hongsik Park, and Byungha Shin, “Building Energy Performance Evaluation of Building Integrated Photovoltaic (BIPV) Window with Semi-transparent Solar Cells”, Applied Energy, Vol. 129, 217 (2014)

6. Seong-Uk Yang, Seung-Ha Choi, Jongtaek Lee, Jeehwan Kim, Woo-Shik Jung, Hyun-Yong Yu, Yonghan Roh, Jin-Hong Park, “Depth-Controllable Ultra Shallow Indium Gallium Zinc Oxide/Gallium Arsenide Hetero Junction Diode”, Journal of Alloys and Compounds, Vol. 561, 228 (2013)

5. Osama Tobail, Jeehwan Kim, and Devendra Sadana, “Method to Determine the Collection Length in Field-Driven a-Si1-xGex:H Solar Cells”, Energy Procedia, Vol. 10, 213 (2011)

4. J. Liu, T. M. Lu, J. Kim, K. Lai, D. C. Tsui, and Y. H. Xie, “The proximity effect of the regrowth interface on two-dimensional electron density in strained Si”, Applied Physics Letters, Vol 92, 112113 (2008)

3. J. Liu, J.H. Kim, Y.H. Xie, T.M. Lu, and K. Lai, “Epitaxial growth of two-dimensional electron gas (2DEG) in strained silicon for research on ultra-low energy electronic processes”, Thin Solid Films, Vol 517, 45 (2008)

2. T. M. Lu, J. Liu, J. Kim, K. Lai, D. C. Tsui, and Y. H. Xie, “Capacitively induced high mobility two-dimensional electron gas in undoped Si/Si1-xGex heterostructures with atomic-layer-deposited dielectric”, Applied Physics Letters, Vol 90, 182114 (2007)

1. Z. M. Zhao, T. S. Yoon, W. Feng, B.Y. Li, J. H. Kim, J. Liu, O. Hulko, Y. H. Xie, H. M. Kim, K. B. Kim, H. J. Kim, K. L. Wang, C. Ratsch, R. Caflisch, D. Y. Ryu, and T. P. Russell, “The challenges in guided self-assembly of Ge and InAs quantum dots on Si”, Thin Solid Films, Vol 508, No.1, 195 (2006)

SELECTED US PATENTS

1 Grant # 9,459,797 Uniformly distributed self-assembled cone-shaped pillars for high efficiency solar cells
2 Grant # 9,443,997 Hybrid CZTSSe photovoltaic device
3 Grant # 9,443,957 Self-aligned source and drain regions for semiconductor devices
4 Grant # 9,418,870 Silicon germanium-on-insulator formation by thermal mixing
5 Grant # 9,401,397 Reduction of defect induced leakage in III-V semiconductor devices
6 Grant # 9,394,178 Wafer scale epitaxial graphene transfer
7 Grant # 9,379,259 Double layered transparent conductive oxide for reduced schottky barrier in photovoltaic devices
8 Grant # 9,337,436 Transferable transparent conductive oxide
9 Grant # 9,337,274 Formation of large scale single crystalline graphene
10 Grant # 9,331,220 Three-dimensional conductive electrode for solar cell
11 Grant # 9,324,813 Doped zinc oxide as N.sup.+ layer for semiconductor devices
12 Grant # 9,324,794 Self-formation of high-density arrays of nanostructures
13 Grant # 9,324,566 Controlled spalling using a reactive material stack
14 Grant # 9,318,641 Nanowires formed by employing solder nanodots
15 Grant # 9,312,132 Method of forming high-density arrays of nanostructures
16 Grant # 9,306,107 Buffer layer for high performing and low light degraded solar cells
17 Grant # 9,231,133 Nanowires formed by employing solder nanodots
18 Grant # 9,214,577 Reduced light degradation due to low power deposition of buffer layer
19 Grant # 9,203,022 Resistive random access memory devices with extremely reactive contacts
20 Grant # 9,190,549 Solar cell made using a barrier layer between p-type and intrinsic layers
21 Grant # 9,153,729 Atomic layer deposition for photovoltaic devices
22 Grant # 9,123,842 Photoreceptor with improved blocking layer
23 Grant # 9,123,838 Transparent conductive electrode for three dimensional photovoltaic device
24 Grant # 9,105,854 Transferable transparent conductive oxide
25 Grant # 9,105,805 Enhancing efficiency in solar cells by adjusting deposition power
26 Grant # 9,099,664 Transferable transparent conductive oxide
27 Grant # 9,096,050 Wafer scale epitaxial graphene transfer
28 Grant # 9,093,290 Self-formation of high-density arrays of nanostructures
29 Grant # 9,070,617 Reduced S/D contact resistance of III-V mosfet using low temperature metal-induced crystallization of n+ Ge
30 Grant # 9,059,272 Self-aligned III-V MOSFET fabrication with in-situ III-V epitaxy and in-situ metal epitaxy and contact formation
31 Grant # 9,059,271 Self-aligned III-V MOSFET fabrication with in-situ III-V epitaxy and in-situ metal epitaxy and contact formation
32 Grant # 9,059,013 Self-formation of high-density arrays of nanostructures
33 Grant # 9,040,428 Formation of metal nanospheres and microspheres
34 Grant # 9,040,340 Temperature grading for band gap engineering of photovoltaic devices
35 Grant # 9,035,282 Formation of large scale single crystalline graphene
36 Grant # 8,933,456 Germanium-containing release layer for transfer of a silicon layer to a substrate
37 Grant # 8,927,857 Silicon: hydrogen photovoltaic devices, such as solar cells, having reduced light induced degradation and method of making such devices
38 Grant # 8,916,451 Thin film wafer transfer and structure for electronic devices
39 Grant # 8,916,409 Photovoltaic device using nano-spheres for textured electrodes
40 Grant # 8,901,695 High efficiency solar cells fabricated by inexpensive PECVD
41 Grant # 8,889,466 Protective insulating layer and chemical mechanical polishing for polycrystalline thin film solar cells
42 Grant # 8,889,456 Method of fabricating uniformly distributed self-assembled solder dot formation for high efficiency solar cells
43 Grant # 8,878,055 Efficient nanoscale solar cell and fabrication method
44 Grant # 8,866,003 Solar cell employing an enhanced free hole density p-doped material and methods for forming the same
45 Grant # 8,859,321 Mixed temperature deposition of thin film silicon tandem cells
46 Grant # 8,846,440 Germanium photodetector
47 Grant # 8,841,544 Uniformly distributed self-assembled solder dot formation for high efficiency solar cells
48 Grant # 8,841,162 Germanium photodetector
49 Grant # 8,828,504 Deposition of hydrogenated thin film
50 Grant # 8,822,317 Self-aligned III-V MOSFET diffusion regions and silicide-like alloy contact
51 Grant # 8,735,210 High efficiency solar cells fabricated by inexpensive PECVD
52 Grant # 8,685,858 Formation of metal nanospheres and microspheres
53 Grant # 8,679,947 Self-formation of high-density defect-free and aligned nanostructures
54 Grant # 8,653,360 Compositionally-graded band gap heterojunction solar cell
55 Grant # 8,642,431 N-type carrier enhancement in semiconductors
56 Grant # 8,628,999 Solar cell made in a single processing chamber
57 Grant # 8,628,996 Uniformly distributed self-assembled cone-shaped pillars for high efficiency solar cells
58 Grant # 8,624,361 Self-formation of high-density defect-free and aligned nanostructures
59 Grant # 8,617,938 Device and method for boron diffusion in semiconductors
60 Grant # 8,614,116 Germanium photodetector
61 Grant # 8,536,043 Reduced S/D contact resistance of III-V MOSFET using low temperature metal-induced crystallization of n+ Ge
62 Grant # 8,476,152 N-type carrier enhancement in semiconductors
63 Grant # 8,354,694 CMOS transistors with stressed high mobility channels
64 Grant # 8,343,863 N-type carrier enhancement in semiconductors
65 Grant # 8,304,272 Germanium photodetector
66 Grant # 8,298,923 Germanium-containing release layer for transfer of a silicon layer to a substrate
67 Grant # 8,178,430 N-type carrier enhancement in semiconductors
68 Grant # 8,039,371 Reduced defect semiconductor-on-insulator hetero-structures
69 Grant # 7,935,612 Layer transfer using boron-doped SiGe layer
70 Grant # 7,754,008 Method of forming dislocation-free strained thin films

INVITED TALKS

  1. “Uniform epitaxial SiGe memory by one dimensional filament confinement for large-scale synaptic arrays”, MRS Fall, Boston, 2017
  2. Material challenges and opportunities in next generation electronics:   From non-silicon electronics to artificial neural network, MIT Mechanical Engineering Colloquium, 2017
  3. “2D material-based layer transfer based on remote epitaxy & Uniform epitaxial RAM towards large-scale neuromorphic arrays”, Stanford University, 2017
  4. “2D material-based layer transfer based on remote epitaxy & Uniform epitaxial RAM towards large-scale neuromorphic arrays”, UC Berkeley, 2017
  5. “2D material-based layer transfer based on remote epitaxy & Uniform epitaxial RAM towards large-scale neuromorphic arrays”, University of Illinois, Urbana-Champaign, 2017
  6. “Innovation in epitaxy still required for next generation computing”, University of Massachusetts, Amherst, 2017
  7. “2D material-based layer transfer based on remote epitaxy & Uniform epitaxial RAM towards large-scale neuromorphic arrays”, UC Santa Barbara, CA, 2017
  8. “Remote epitaxy through graphene”, 2D Electronic Materials Symposium, Santa Fe, NM, 2017
  9. “Recent Advance in graphene-based layer transfer”, TMS, San Diego, 2017
  10. “Recent Advance in graphene-based layer transfer”, ECS, New Orleans, 2017
  11. “Recent Advance in graphene-based layer transfer”, MRS Fall, Boston, 2016
  12. “Advanced ReRAM for neuromorphic computing”, Samsung, Seoul, Korea, 2016
  13. “Nanoelectronics Group at MIT”, Seoul National University, Seoul, Korea, 2016
  14. “Nanoelectronics Group at MIT”, KAIST, Daejon, Korea, 2016
  15. “Nanoelectronics Group at MIT”, Hynix, Ichon, Korea, 2016
  16. “Graphene‐based layer  transfer  for  low‐cost,  high‐throughput,  high‐efficiency  solar  cells”,  LG  Electronics,  Seoul, Korea, 2015
  17. “Single‐crystalline graphene and its application for semiconductor layer transfers”, Lincoln Laboratory, 2015
  18. “Single‐crystalline graphene and its application for semiconductor layer transfers”, NASA Jet Propulsion Laboratory, Los Angeles, 2015
  19. “Single‐crystalline graphene and its application for semiconductor layer transfers, SKKU, Seoul, Korea, 2015
  20. “Nanotechnology for  Photovoltaics:  Strategies  for  scalable  manufacturing  of  efficient  solar  cells”,  Energy  Science Institute, Yale University, 2015
  21. “Atomic‐precision control of nanoscale materials via strain engineering towards scalable manufacturing”, Mechanical Engineering, MIT, 2015
  22. “Material  innovations   for   nanoelectronics:   Atomic‐precision   control   of   two‐dimensional   materials”,   School   of Engineering and Applied Science, Harvard University, 2015
  23. “Atomic‐Precision Control of Single‐Crystalline 2D Materials & Design Principles of 3D PV Architectures”, Electrical and Computer Engineering , University of Illinois, Urbana‐Champaign, 2014
  24. “Atomic‐precision Control of Single‐crystalline 2D Materials & Recent Progress on Thin Film PV in IBM”, Electrical Engineering, UC Berkeley, 2014
  25. “Atomic‐precision Control of Single‐crystalline 2D Materials & Recent Progress on Thin Film PV in IBM”, Yale Institute for Nanoscience and Quantum Engineering, Yale University, 2014
  26. “Wafer‐scale Single‐crystalline Graphene & High‐aspect Ratio Three‐dimensional PV”, Applied Physics and Materials Science, Caltech, 2014
  27. “Wafer‐scale Single‐crystalline  Graphene  and  Its  applications”,  Department  of  Materials  Science  and  Engineering, UCLA, 2014
  28. “Atomic‐precision Control of Two‐dimensional Materials & Design Principles of Three‐dimensional PV Architectures”, Materials Department, UC Santa Barbara, 2014
  29. “Atomic‐precision Control of Two‐dimensional Materials & Design Principles of Three‐dimensional PV Architectures”, Department of Materials Science and Engineering, MIT, 2014
  30. “Nanocone‐based three dimensional thin film silicon solar cells” SPIE, San Diego, CA, 2012
  31. “Nanostructured 3D Solar cells”, Department of Materials Science and Engineering, UCLA, 2012
  32. “Nanocone‐based  three   dimensional   thin   film   silicon   solar   cells”,   Department   of   Electrical   Engineering, Sungkyunkwan University, Korea, 2012
  33. “Role of Nanostructures on the Performance of a‐Si:H Solar Cells”, Optical Society of America, Austin, TX, 2011
  34. “Effect of  Work‐Function  Engineering  of  p+/TCO  interface  on  the  Performance  of  a‐Si:H  Solar  Cell”,  IMT,  École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, 2011
  35. “The role of high work‐function metallic nanodots on the performance of amorphous silicon solar cells”, Department of Materials Science and Engineering, Seoul National University, Korea, 2010
  36. “Plasmonics in thin film solar cells”, Department of Electrical Engineering, KAIST, Korea, 2010
  37. “Solar cell and Advanced CMOS research in IBM”, Department of Materials Science and Engineering, UCLA, 2010